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General Amplifier Block Diagram 
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Input and output voltage relation of the amplifier   

can be modeled simply as: 
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Amplifier Classification 

 Amplifier can be categorized in 2 manners.  

 According to signal level: 

 Small-signal Amplifier. 

 Power/Large-signal Amplifier. 

 According to D.C. biasing scheme of the active component: 

 Class A. 

 Class B. 

 Class AB. 

 Class C. 

 
There are also other classes, such as Class D (D stands for digital), Class E and Class F.  These all 
uses the transistor/FET as a switch. 
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Small-Signal Versus Large-Signal Operation 
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Small-Signal Amplifier (SSA) 

 All amplifiers are inherently nonlinear. 

 However when the input signal is small, the input and output relationship of the 

amplifier is approximately linear. 

 

 

 

 This linear relationship applies also to current and power. 

 An amplifier that fulfills these conditions: (1) small-signal operation (2) linear, is called 

Small-Signal Amplifier (SSA). SSA will be our focus. 

 If a SSA amplifier contains BJT and FET, these components can be replaced by their 

respective small-signal model, for instance the hybrid-Pi model for BJT. 

When vi(t)0 (< 2.6mV)    tvatv io 1 (1.1) 

Linear relation 



6 

An RF Amplifier Schematic 
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Typical RF Amplifier Characteristics 

 To determine the performance of an amplifier, the following characteristics are 

typically observed. 

 1. Power Gain. 

 2. Bandwidth (operating frequency range). 

 3. Noise Figure. 

 4. Phase response. 

 5. Gain compression. 

 6. Dynamic range. 

 7. Harmonic distortion. 

 8. Intermodulation distortion. 

 9. Third order intercept point (TOI). 
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Power Gain 

 For amplifiers functioning at RF and microwave frequencies, usually of interest is the 

input and output power relation. 

 The ratio of output power over input power is called the Power Gain (G), usually 

expressed in dB. 

 

 

 

 There are a number of definition for power gain as we will see shortly. 

 Furthermore G is a function of frequency and the input signal level. 
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Why Power Gain for RF and Microwave Circuits? (1) 

 Power gain is preferred for high frequency amplifiers as the impedance encountered 

is usually low (due to presence of parasitic capacitance). 

 

 For instance if the amplifier is required to drive 50Ω load the voltage across the load 

may be small, although the corresponding current may be large (there is current 

gain). 

 For amplifiers functioning at lower frequency (such as IF frequency), it is the voltage 

gain that is of interest, since impedance encountered is usually higher (less 

parasitic). 

 For instance if the output of IF amplifier drives the demodulator circuits, which are 

usually digital systems, the impedance looking into the digital system is high and 

large voltage can developed across it.  Thus working with voltage gain is more 

convenient. 

Power = Voltage x Current 
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Why Power Gain for RF and Microwave Circuits? (2) 

 Instead on focusing on voltage or current gain, RF engineers focus on 

power gain.  

 By working with power gain, the RF designer is free from the 

constraint of system impedance.  For instance in the simple receiver 

block diagram below, each block contribute some power gain.  A large 

voltage signal can be obtained from the output of the final block by 

attaching a high impedance load to it’s output. 
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Harmonic Distortion (1) 

ZL 
Vs 

Zs 

When the input driving signal is 

small, the amplifier is linear.   

Harmonic components are  

almost non-existent.  

Harmonics generation reduces the gain 
of the amplifier, as some of the output 
power at the fundamental frequency is 
shifted to higher harmonics.  This result in 
gain compression seen earlier! 
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Harmonic Distortion (2) 
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When the input driving signal is 

too large, the amplifier becomes 

nonlinear. Harmonics are 

introduced at the output.  

Harmonics generation reduces the gain 
of the amplifier, as some of the output 
power at the fundamental frequency is 
shifted to higher harmonics.  This result in 
gain compression seen earlier! 
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Power Gain, Dynamic Range and Gain Compression 
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Bandwidth 

 Power gain G versus frequency for small-signal amplifier. 
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Intermodulation Distortion (IMD) 
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Noise Figure (F)  

Vs 

• The amplifier also introduces noise into the output in 

  addition to the noise from the environment. 

• Assuming small-signal operation. 

Noise Figure (F)= SNRin/SNRout 

• Since SNRin is always larger 

than SNRout, F > 1 for an 

amplifier which contribute noise. 

SNR: 
Signal to Noise 
Ratio 

Smaller SNRin 

Larger SNRout 

Zs 

ZL 
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Power Components in an Amplifier 
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Naming Convention 
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In the spirit of high- 
frequency circuit design,  
where frequency response 
of amplifier is characterized 
by S-parameters and 
reflection coefficient is 
used extensively 
instead of impedance,  
power gain can be expressed 
in terms of these parameters. 



Scattering Parameters 







Example 

8.56  8.56 

141.8 

Below is a matched 3 dB attenuator. Find the S-parameter of the circuit. 

Solution 

Z1=Z2= 8.56  and Z3= 141.8  

By assuming the output port is terminated by Zo = 50 , then 
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Example 
A certain two-port network is measured and the following scattering matrix is obtained: 
 
 
 
From the data , determine whether the network is reciprocal or lossless. If a short 
circuit is placed on port 2, what will be the resulting return loss at port 1? 
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Solution 

Since [S] is symmetry, the network is reciprocal. To be lossless, the S parameters 
must satisfy 
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|S11|2 + |S12|2 = (0.1)2 + (0.8)2 = 0.65 

Since the summation is not equal to 1, thus  
it is not a lossless network. 

For i=j 



Reflected power at port 1 when port 2 is shorted can be calculated as follow and the fact 
that a2= -b2 for port 2 being short circuited, thus 

b1=S11a1 + S12a2 = S11a1 - S12b2  

b2=S21a1 + S22a2 = S21a1 - S22b2  
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Dividing (1) by a1 and substitute the result in (3) ,we have 

(3) 

  dB97.3633.0log20log20  Return loss 
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Power Gain Definition 

 From the power components, 3 types of power gain can be defined. 

 

 

 

 

 

 

 

 

 

 GP, GA and GT can be expressed as the S-parameters of the amplifier and the 

reflection coefficients of the source and load networks.   
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